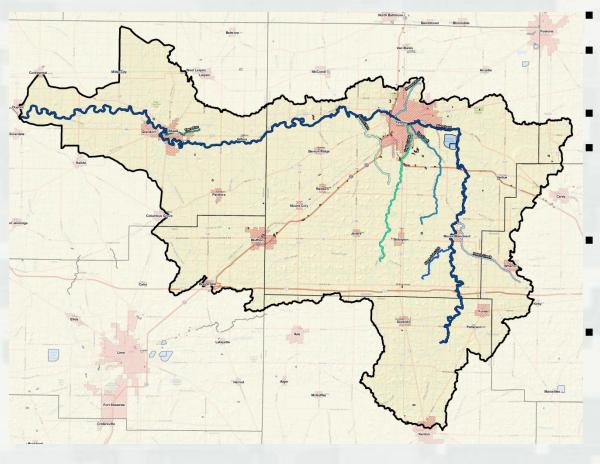
Blanchard River Watershed Study

December 10-12, 2012

Mike Pniewski Project Manager

Blanchard.NEPA@usace.army.mil



US Army Corps of Engineers
BUILDING STRONG®

Blanchard River Watershed Feasibility Study Findlay/Ottawa Meetings

December 10 and 11, 2012

- 771 Square Miles
- Flows into Auglaize, then Maumee River.
- Mostly Agricultural Land Use
- Very Flat Except in Headwater Areas of Watershed
 - Larger Communities include City of Findlay, Village of Ottawa, Glandorf, Bluffton.
- Other Major Tributaries Include:
 - ▶ Lye Creek
 - ▶ Eagle Creek
 - ▶ Riley Creek (Bluffton)

Agenda

- Introductions
- Purpose of Project
- Review Authority
- Discuss of Project Measures and Plan Components
- Costs of Various Measures
- Benefits of Various Plan Components
- Process and Schedule Moving Forward
- Address Questions Submitted on Cards

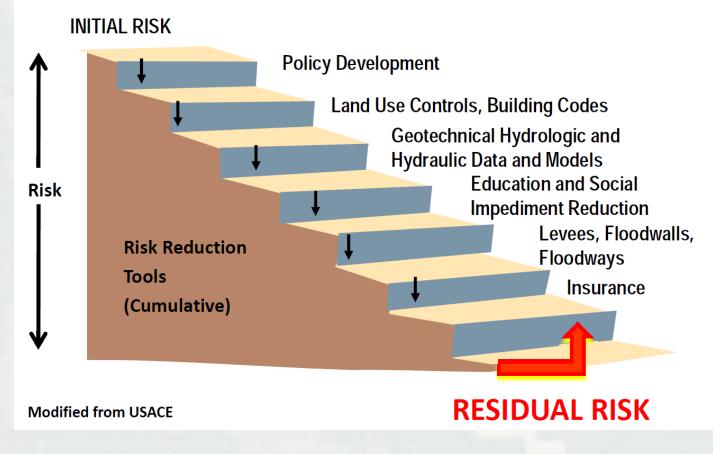
NEPA Scoping

Purpose

- ▶ Identify issues and alternatives the public wishes to be considered for the Environmental Impact Statement (EIS)
- Blanchard NEPA Scoping
 - ► Two meetings previously held in 2008
 - ► These four meetings week of 10 DEC 2012
- Public Comment
 - ▶ 30 day Public Comment period begins 12 DEC
 - Comments required in this period for consideration for Tentatively Selected Plan
 - ▶ By mail
 - ▶ By email
 - Blanchard.NEPA@usace.army.mil

Purpose

- Identify Flood Risk Management Measures in Findlay and Ottawa
- Discuss Features, Benefits, and Costs
- Process and Schedule Moving Forward



Flood Risk Management

Living with Floods –Recognizing and Managing Risk

Authority

 Section 441 – Western Lake Erie Basin, Ohio, Indiana and Michigan – conduct study to develop measures to improve flood control.

Cost Sharing:

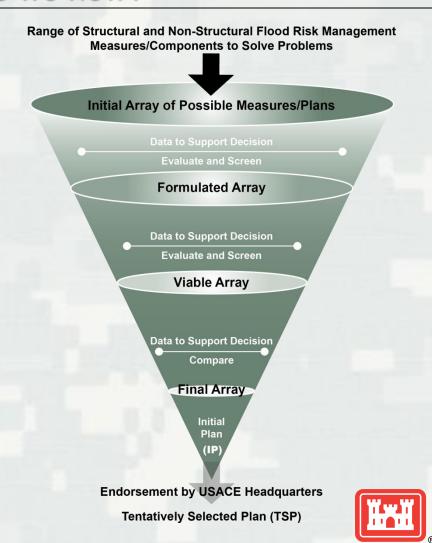
- ▶ Hancock County Non-Federal Sponsors
- ► Implementation: 50% Federal, 50% non-Federal

Funding

- ► Currently funded to Spring 2013
- ► Future funding required to complete study

Purpose of Study

- Develop Plan for Flood Risk Reduction
 - ▶ Damage of Structures
 - ▶ Loss of Life
 - ▶ Highest Net Benefits (Benefits of Plan less Cost of Plan)
- Structural Measures
 - Reduction in Water Surface Elevation and Inundation Area
 - Will not result in elimination or significant reduction of risk of flooding in Blanchard Watershed
- Non-Structural Measures
 - Removal or Elevation of structures serve to minimize risk of damages due to flooding
- Design Condition
 - ► There is always the risk that an event will be greater than design condition. 1913 > 100 year event
 - ► Probability of 100 year event during 30-year mortgage ~ 26%


Feasibility Study Components Where are we now?

Process

- ✓ Determination of Federal Interest Fact Sheet
- ✓ Inventory existing conditions
- ✓ Problem identification
- Determine planning objective and constraints
- ✓ Develop measures
- Combine measures to formulate alternative plans
- ✓ Evaluate alternative plans
- ✓ Select a plan

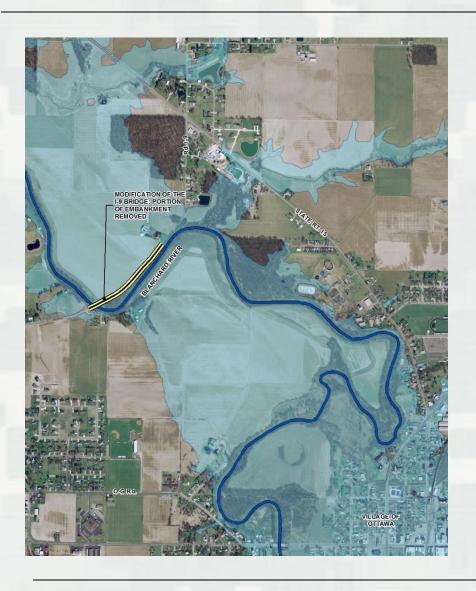
Documents

- ✓ Final Array Synopsis and Risk Register
- ✓ Detailed Project Report (DPR)
- Environmental Assessment or Environmental Impact Statement

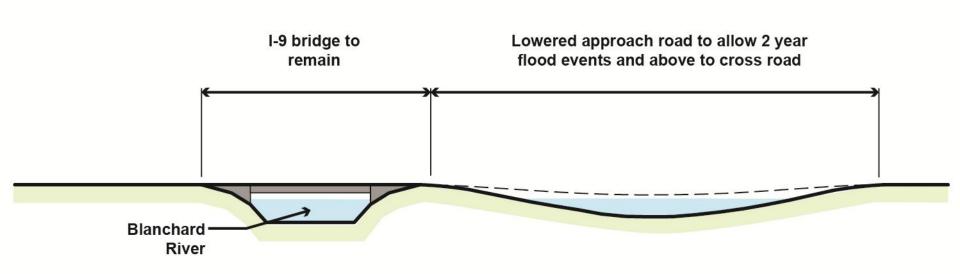
Flood Risk Management Measures Considered

Category	Measures	Status
Detention Basins	In-line Detention Eagle Cr.Off-line Detention F/OttawaOff-line Detention West. Div.	Carried ForwardCarried ForwardEliminated
Flood Plain Evacuation	Comprehensive solutionSelected Evacuation (NS)	EliminatedCarried Forward
Channel Improvements	- Deepen Widen Blanchard	- Eliminated
High Velocity Channels	- Deepen Blanchard	- Eliminated
Levees and Floodwalls	- Levee/Floodwalls in Findlay	- Eliminated
Diversions/Channel Relocations	Blanchard to Lye CutoffWestern Diversion	Carried Forward2 Alignments CarriedForward
Non-Structural Retrofits	- Elevate, retrofit, buyout	- Carried Forward
Bridge Removal/Modification	General removalNorfolk Southern RR Bridge	Not Carried ForwardCarried Forward
Flood Warning/Emergency Measures	- Gauges, Notification System	- Implemented

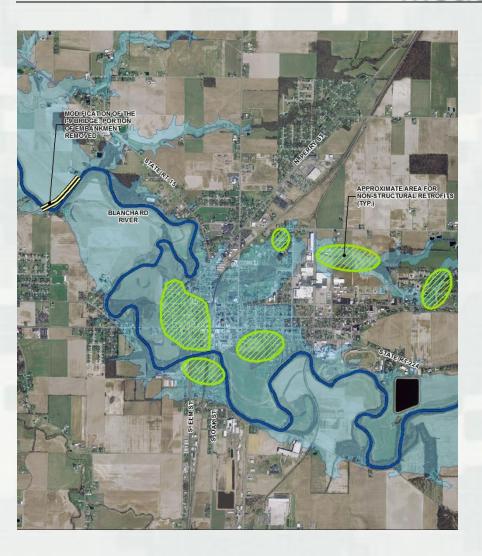
Feasibility Study Technical Considerations To Identify Recommended Plan


- Build and Test HEC-FDA Unsteady State Hydrology and Hydraulics Model Without Project Measures (Baseline Conditions Model)
- Calibrate Model Against Existing Gage Data Available in the Watershed
- Screen and Identify Measures for Detailed Evaluation Using HEC-RAS Model Determine Flood Reduction Benefits Across A Range of Frequency Storms (5, 10, 25, 50, 100, 200, and 500 year Storms)
- Evaluate Benefits in Terms of:
 - Flood Elevation Reductions
 - Net Benefits (Reduced Damages)
 - Flood Damage Reduction Benefits
 - ► Residual Damages (damages that cannot be eliminated)
 - Environmental and Social Impacts
 - Emergency Access Improvement/Life Safety

Ottawa Alternative Plans


Modification of I – 9 Bridge Approach

- Remove Embankment
- Bridge Stays As Is
- Restore Flow, Reduce Upstream Flood Elevations
- Cost \$1-2M



I-9 Bridge and Approach Profile

I-9 Bridge Modification Plus Non-Structural Measures

- Includes I-9 Bridge Modification
- Non-structural Measures in Ottawa
- Restore Flow, Reduce Upstream Flood Elevations, Prevent/Reduce Damages to Existing Structures
- Cost \$2M to \$80M
- Cost driven by level of floodplain protection (5 to 100 year) for Non-structural Plan

Typical Non-Structural Measures Considered

Building elevation in progress

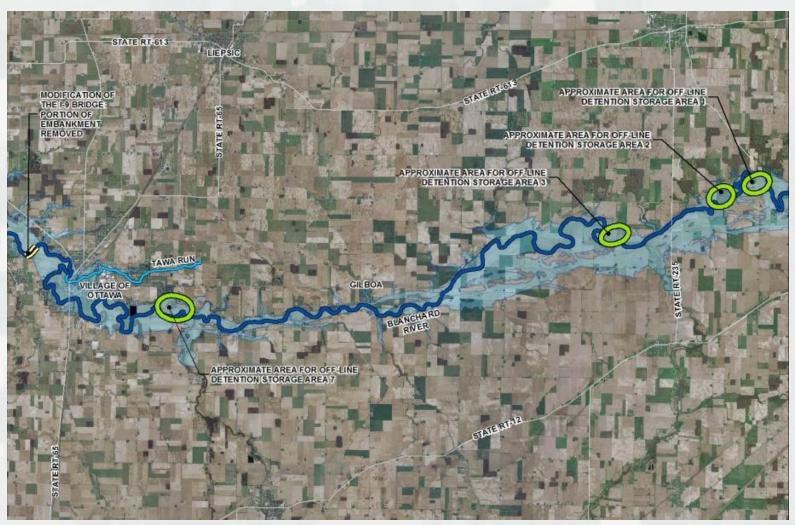
Ringwall protection

Building elevation complete

Building acquisition and removal from floodplain

Typical Non-Structural Measures Considered

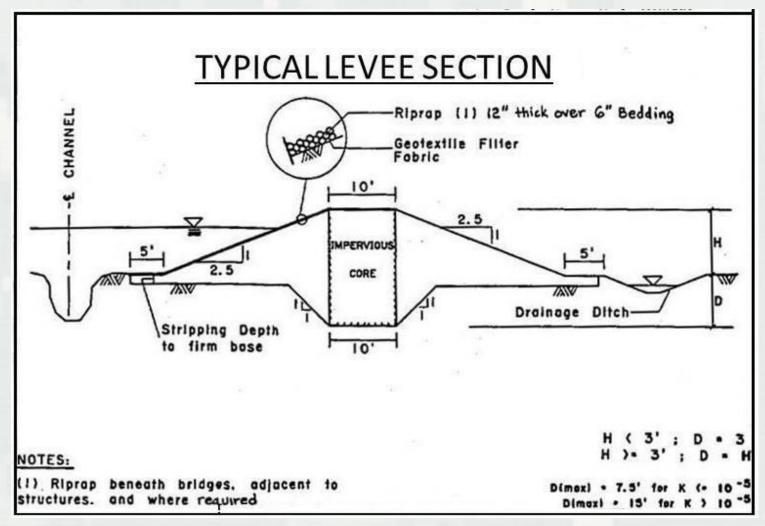
Three nonstructural scales:


- 5, 10, 25-year floodplains
- Design Level of Protection: 100-year modeled flood level + 1' freeboard
- Considered building elevation, floodproofing, ringwalls, rebuilding, and acquisition

Selection Process

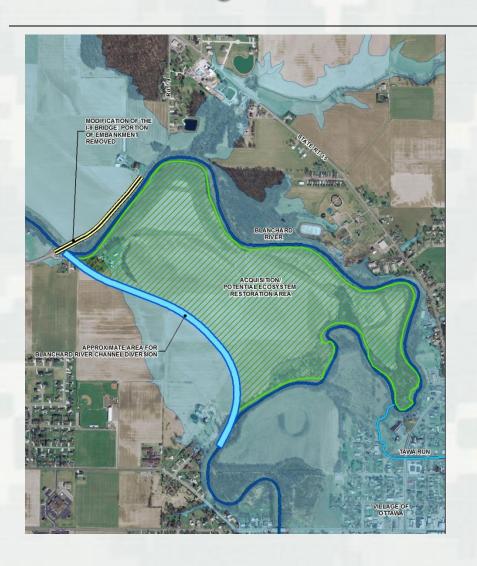
- Identify feasible treatments for each structure and assign costs
- Select least-cost feasible treatment

I-9 Bridge Modification and Offline Storage

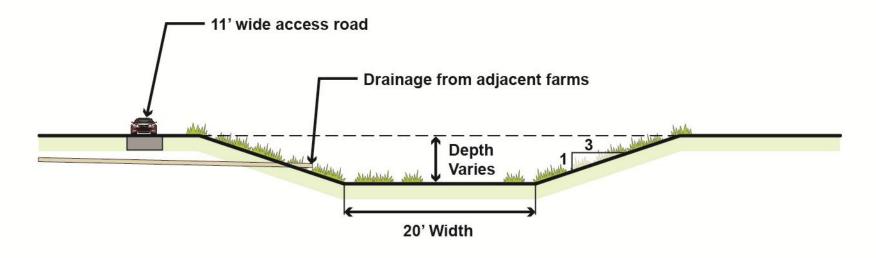


I-9 Bridge Modification and Offline Storage

- Includes I-9 Bridge Modification
- Addition of Offline Storage Areas to Store and Slow Water, Reduce Flood Elevations In Ottawa
- Cost \$13-18M



Off-line Storage Typical Design Features



I-9 Bridge Modification and Channel Diversion

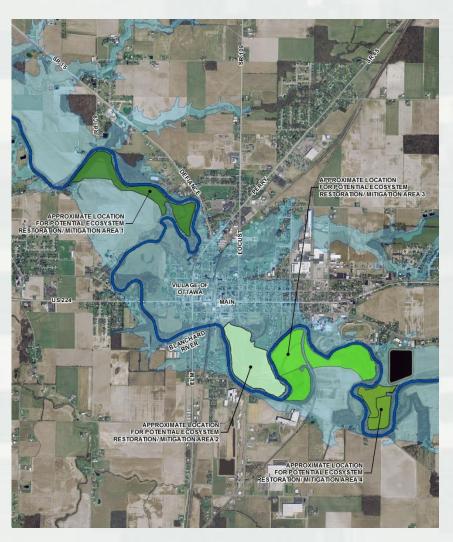
- Includes I-9 Bridge Modification
- Diversion Channel to Shorten Flow Path, Pull Floodwaters Away from Ottawa
- Restore Flow, Reduce Upstream Flood Elevations
- Cost \$7-10M
- Requires Acquisition of Farmland (180 acres) Cut-off by Diversion Channel.
- Land Used for Ecosystem
 Restoration/Mitigation and
 Source of Soil for Future Upland
 Reservoir Construction.

Diversion Channel Typical Cross-Section

FULL CUT CHANNEL SECTION

Flood Water Surface Elevation Reduction

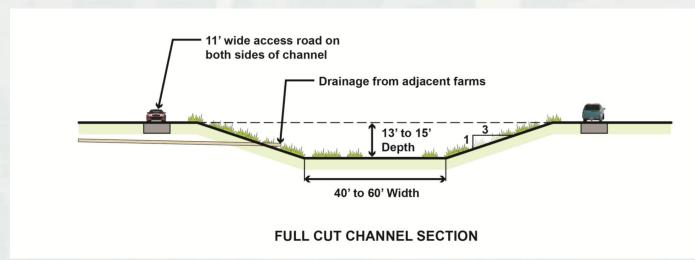
Plan	25 Year	100 Year	
I-9	4-6"	9-11"	
I-9 and Off-Line	4-8"	6-14"	
I-9 and Diversion	10-12"	10-18"	

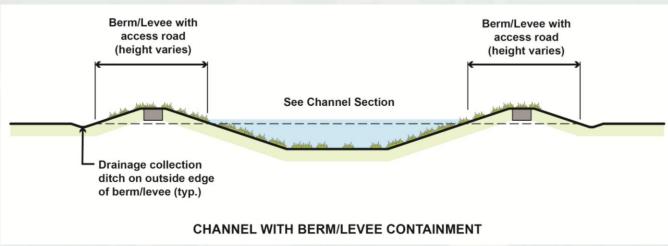

- (1) Only I-9 and Off-Line includes Off-line Detention water storage benefits. Additional water surface elevation reduction may be possible once included in the Plan.
- (2) There is approximately 12" between the 2005 and 2011 floods and the 2005 to 2003 floods and 14" between the 1981 and 2011 floods

Findlay Alternative Plans

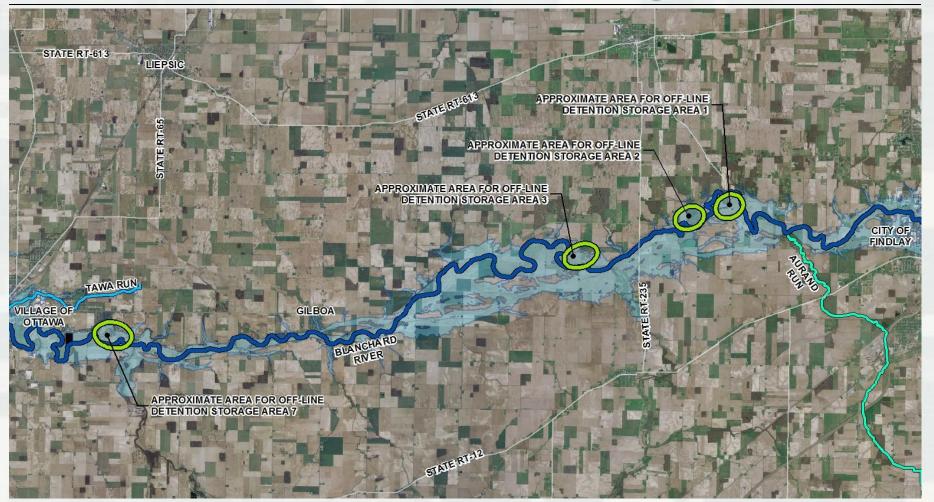
Additional Potential Ecosystem Restoration/Mitigation Areas

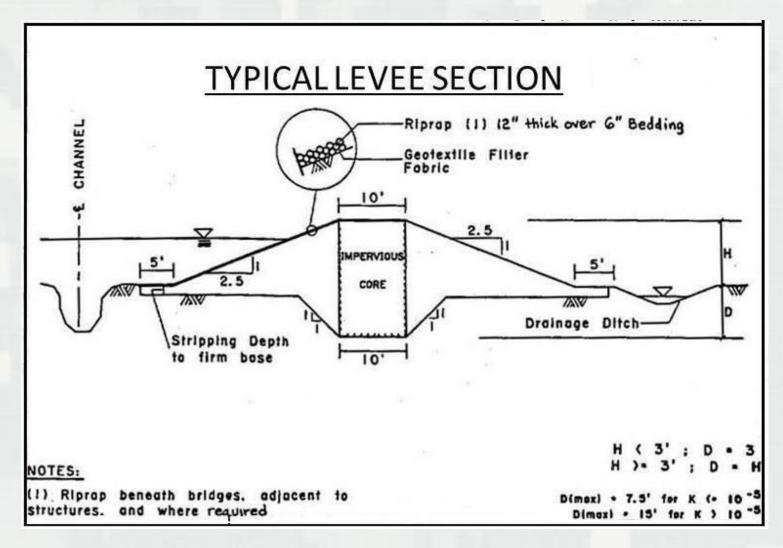
- Sites Along Blanchard River
- Focus on Riparian and Potential Wetland Restoration
- Mitigate Other Project Impacts in Findlay Area
- Help to Slow and Store Water
- Improve Water Quality by Trapping Sediment and Create Habitat Benefits
- Cost: To Be Determined


Western Diversion, Off-Line Detention, Norfolk Southern RR Bridge



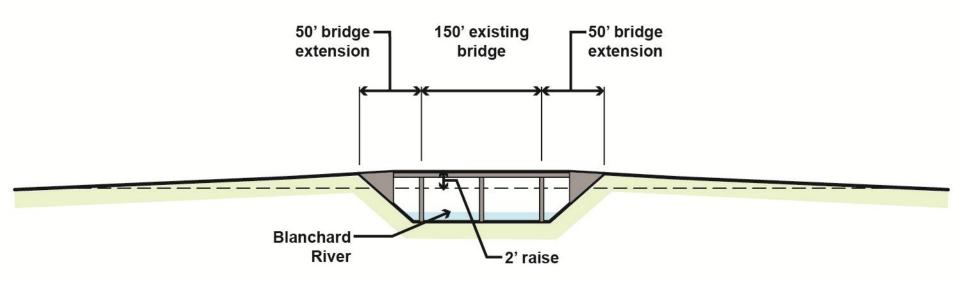
- Western Diversion
 - ► Align. 1 (Aurand Run)(7.7 miles)
 - ► Align. 2 (9.3 miles)
- Off-line Detention
 - 4 locations
 - Store and Slow Water, Mitigate for Induced Flooding.
- Norfolk and Southern RR Bridge
 - Add Span and Raise Grade
 - Remove Structures
- Cost \$50-70M
- Reduce Flood Water Surface Elevations, Reduced damages


Western Diversion Cross-Section

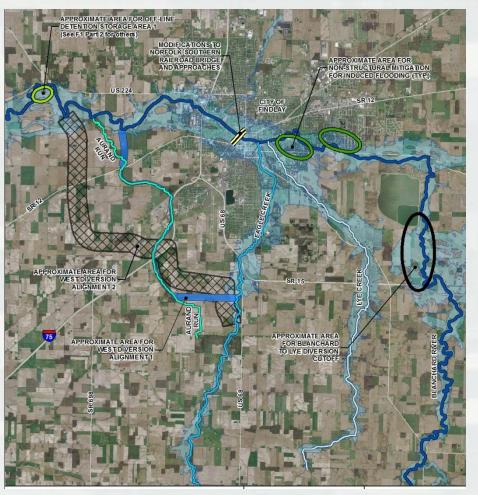


Western Diversion, Off-Line Detention, Norfolk Southern RR Bridge

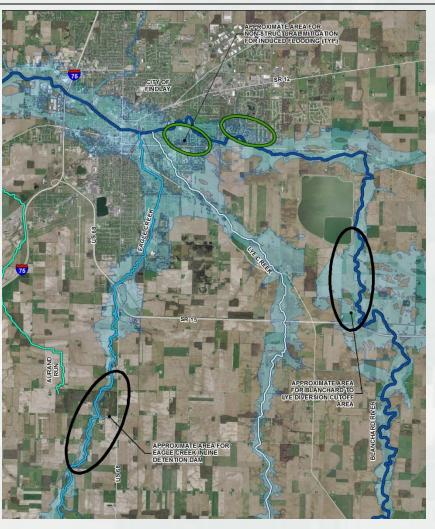
Off-line Storage Typical Design Features


Western Diversion, Off-Line Detention, Norfolk Southern RR Bridge

- Add Additional Span For Water to Flow Through
- Raise Grade by 1.5-2 Feet to Improve Flow
- Remove Structures to Improve Water Flow Path Through Area
- Use Area for Recreation, Expand Bike Path



Norfolk Southern RR Bridge Profile Change to Improve Water Flows Through Downtown Findlay


Western Diversion, Blanchard to Lye Cutoff, and NS Bridge

- Western Diversion (Align. 1 or 2)
- Blanchard/Lye Cutoff
- Non-structural Mitigation for Induced Flooding in Findlay
- Reduced Damage Along Eagle
 Creek, Keep Flows from Jumping
 to Lye Creek, Lye Creek
 Reduced Damages
- Cost: \$110M \$140M

Eagle Creek In-Line Detention, Blanchard to Lye Cutoff, and Non-Structural Mitigation

- Detention Structure on Eagle Creek
- Blanchard to Lye Cutoff
- Non-Structural Mitigation for Induced Flooding
- Cost \$40-60M
- Benefits Include Reduced Flood Water Surface Elevations on Eagle Creek, Reduced Water Surface Levels in Findlay

Non-Structural Plan

- Retrofit, Buyouts and Removal, Flood Proofing, Ringwalls, Etc.
- Can be Combined with Structural Measures
- Evaluated for 5, 10, and 25 Year Storm
- Cost \$30M to \$70M
- Reduce Damage for Difference Frequency Storms
- Create Open Space Downtown in Area of Buyouts, Recreation and Restoration Benefits

Typical Non-Structural Measures Considered

Building elevation in progress

Ringwall protection

Building elevation complete

Building acquisition and removal from floodplain

Typical Non-Structural Measures Considered

Three nonstructural scales:

- 5, 10, 25-year floodplains
- Design Level of Protection: 100-year modeled flood level + 1' freeboard
- Considered building elevation, floodproofing, ringwalls, rebuilding, and acquisition

Selection Process

- Identify feasible treatments for each structure and assign costs
- Select least-cost feasible treatment

Flood Water Surface Elevation Reduction

Location	25 Yr. Diversion	100 Yr. Diversion	25 Yr. Blanchard /Lye	100 Yr. Blanchard /Lye
Bright Road/Blanchard	11-15"	11-15"	4-6"	4-6" increase
6 th Street/Eagle Creek	30-38"	18-26"	33-38"	18-24"
CR140/Blanchard	12-15"	14-23"	12-18"	10-12"
Main Street/Blanchard	12-18"	12-18"	18-22"	18-20"

There is a ~2' difference between the 2007 and 2011 floods at Main St. There is a ~1.7' difference between the 2011 and 2006 floods at Main St.

Schedule and Budget

- Feasibility FY12 FY15
 - Final Array Synopsis
 - Detailed Project Report
 - National Environmental Policy Act Coordination
- Design FY15 FY17
 - (65% Federal, 35% non-Federal)
 - Plans and Specifications
- Construction FY17 FY?
 - (65% Federal, 35% non-Federal)
 - To be determined

